World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FEATURE SELECTION VIA LEAST SQUARES SUPPORT FEATURE MACHINE

    https://doi.org/10.1142/S0219622007002733Cited by:39 (Source: Crossref)

    In many applications such as credit risk management, data are represented as high-dimensional feature vectors. It makes the feature selection necessary to reduce the computational complexity, improve the generalization ability and the interpretability. In this paper, we present a novel feature selection method — "Least Squares Support Feature Machine" (LS-SFM). The proposed method has two advantages comparing with conventional Support Vector Machine (SVM) and LS-SVM. First, the convex combinations of basic kernels are used as the kernel and each basic kernel makes use of a single feature. It transforms the feature selection problem that cannot be solved in the context of SVM to an ordinary multiple-parameter learning problem. Second, all parameters are learned by a two stage iterative algorithm. A 1-norm based regularized cost function is used to enforce sparseness of the feature parameters. The "support features" refer to the respective features with nonzero feature parameters. Experimental study on some of the UCI datasets and a commercial credit card dataset demonstrates the effectiveness and efficiency of the proposed approach.