An Extension Collaborative Innovation Model in the Context of Big Data
Abstract
The processes of generating innovative solutions mostly rely on skilled experts who are usually unavailable and their outcomes have uncertainty. Computer science and information technology are changing the innovation environment and accumulating Big Data from which a lot of knowledge is to be discovered. However, it is a rather nebulous area and there still remain several challenging problems to integrate the multi-information and rough knowledge effectively to support the process of innovation. Based on the new cross discipline Extenics, the authors have presented a collaborative innovation model in the context of Big Data. The model has two mutual paths, one to transform collected data into an information tree in a uniform basic-element format and another to discover knowledge by data mining, save the rules in a knowledge base, and then explore the innovation paths and solutions by a formularized model based on Extenics. Finally, all possible solutions are scored and selected by 3D-dependent function. The model which integrates different departments to put forward the innovation solutions is proved valuable for a user of the Big Data by a practical innovation case in management.