World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Domain Knowledge-Based Link Prediction in Customer-Product Bipartite Graph for Product Recommendation

    https://doi.org/10.1142/S0219622018410031Cited by:17 (Source: Crossref)

    In this paper, we propose domain knowledge-based link prediction algorithm in customer-product bipartite network to improve effectiveness of product recommendation in retail. The domain knowledge is classified into product domain knowledge and time context knowledge, which play an important part in link prediction. We take both of them into consideration in recommendation and form a unified domain knowledge-based link prediction framework. We capture product semantic similarity by ontology-based analysis and time attenuation factor from time context knowledge, then incorporate them into network topological similarity to form a new linkage measure. To evaluate the algorithm, we use a real retail transaction dataset from Food Mart. Experimental results demonstrate that the usage of domain knowledge in link prediction achieved significantly better performance.