World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Mean-CVaR Portfolio Optimization Models based on Chance Theory

    https://doi.org/10.1142/S021962202350058XCited by:1 (Source: Crossref)

    The indeterminacy of financial markets leads investors to face different types of security returns. Usually, security returns are assumed to be random variables when sufficient transaction data are available. If data are missing, they can be regarded as uncertain variables. However, uncertainty and randomness coexist. In this situation, chance theory is the main tool to deal with this complex phenomenon. This paper investigates the conditional value at risk (CVaR) of uncertain random variables and its application to portfolio selection. First, we define the CVaR of uncertain random variables and discuss some of its mathematical properties. Then, we propose an uncertain random simulation to approximate the CVaR. Next, we define the inverse function of the CVaR of uncertain random variables, as well as a computational procedure. As an application in finance, we establish uncertain random mean-CVaR portfolio selection models. We also perform a numerical example to illustrate the applicability of the proposed models. Finally, we numerically compare the mean-CVaR models with the mean-variance models with respect to the optimal investment strategy.