World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

An Effective Multi-Criteria Decision-Making Approach for Allocation of Resources in the Fog Computing Environment

    https://doi.org/10.1142/S0219622023500712Cited by:1 (Source: Crossref)

    Recent advances in Internet technology have shifted the focus of end-users from the usage of traditional mobile applications to the Internet of Things (IoT)-based service-oriented smart applications (SAs). These SAs use edge devices to obtain different types of Fog services and provide their real-time response to the end-users. The Fog computing environment extends its services to the edge network layer and hosts SAs that require low latency. Further, a growing number of latency-aware SAs imposes the issue of effective allocation of resources in the Fog environment. In this paper, we have proposed an effective multi-criteria decision-making (MCDM) based solution for resource ranking and resource allocation in the Fog environment. The Proposed algorithms implement the modified edition of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Analytical Hierarchical Process (AHP) and consider Quality of Experience parameters (QoE), i.e., network bandwidth, average latency, and cores for ranking and mapping of resources. The obtained results reveal that the proposed approach utilizes 70% resources, and reduces the response time by an average of 7.5s as compared to the Cloud model and the Fog model, respectively. Similarly, the completion time of the proposed framework is minimum in comparison with the cloud and Fog models with a difference of 9s and 16s.