World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THEORETICAL STUDY OF HYDROGEN BONDED CLUSTERS OF AMMONIA AND FULMINIC ACID

    https://doi.org/10.1142/S021963360800368XCited by:2 (Source: Crossref)

    Ab initio and density functional calculations are used to analyze the interaction between a molecule of fulminic acid with one, two, three, and four molecules of ammonia along with a 2:2 complex at B3LYP/6-311++G(d, p) and MP2/6-311++G(d, p) computational levels. Cooperative effect (CE) in terms of stabilization energy of clusters is calculated and discussed as well. For the studied clusters, the CE is increased with increasing cluster size. Red shifts of HC stretching frequency for complexes involving HCNO as H-donor are predicted. Atom in molecules is used to analyze the cooperative effect on topological parameters.