World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

COMPUTER SIMULATIONS OF THE INTERACTION OF CIGUATOXIN 3C, BREVENAL AND ent-BREVENAL LADDER POLYETHERS WITH A HOMOLOGY MODEL OF THE VOLTAGE-GATED Kv1.5 POTASSIUM CHANNEL

    https://doi.org/10.1142/S021963360900526XCited by:5 (Source: Crossref)

    The interaction of ladder polyethers of marine origin, like ciguatoxin 3C and brevenal, as well as hypothetic ent-brevenal, with the human voltage-gated Kv1.5 potassium ion channel is investigated in this work using homology modeling, automated docking, and energy scoring from molecular dynamics (MD) simulations. A 3D homology model of the pore region of the Kv1.5 channel, previously developed from the 2.9 Å resolution crystal structure of the mammalian Kv1.2 channel — which has a very similar pore sequence — is used here. While ciguatoxin 3C did not enter the pore, both brevenal and ent-brevenal were found into the pore, the latter one with the best score. Binding is attended by notable strain in the ligands, and the corresponding energy increase was evaluated for ent-brevenal by self consistent field (SCF) and density functional theory (DFT) procedures. Egress of ent-brevenal from the pore, as a microscopical reversal of the ingress, was investigated by a smart form of biased MD simulations. While this study indicates ample room and attractive interactions for both brevenal and its enantiomer into the pore, whether these molecules will be found to inhibit voltage-gated potassium ion currents depends upon the barriers in the real system to access the pore, with their thermodynamic and kinetic requirements.