World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Thermodynamically controlled Diels–Alder reaction of 12-N-methylcytisine: A DFT study

    https://doi.org/10.1142/S0219633614500485Cited by:10 (Source: Crossref)

    A DFT study was performed for the Diels–Alder traction of 12-N-methylcytisine with a number of dienophiles (in boiling toluene under atmospheric pressure), namely, N-phenylmaleimide, maleic anhydride, 2,4-benzoquinone, tetracyanoethylene and methyl methacrylate. It was shown that 12-N-methylcytisine selectively reacts with these dienophiles, only the reaction with N-phenylmaleimide (NPM) resulting in the formation of thermodynamically stable adducts, which is consistent with experimental data. This selectivity of 12-N-methylcytisine is attributable to the difference between the properties of the listed dienophiles, which is confirmed by the relative reactivity indices calculated within the framework of the frontier molecular orbital (FMO) and hard and soft (Lewis) acids and bases (HSAB) theories, the thermodynamic and activation parameters of the forward and retro-Diels–Alder reactions. According to analysis of the theoretical results, NPM is characterized by high chemical potential, hardness close to that of 12-N-methylcytisine, and commensurable heights of the activation barriers for the forward and reverse Diels–Alder reactions and also forms stable [4+2] adducts.