World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Parameter pattern discovery in nonlinear dynamic model for EEGs analysis

    https://doi.org/10.1142/S0219635216500242Cited by:1 (Source: Crossref)

    We propose a nonlinear dynamic model for an invasive electroencephalogram analysis that learns the optimal parameters of the neural population model via the Levenberg–Marquardt algorithm. We introduce the crucial windows where the estimated parameters present patterns before seizure onset. The optimal parameters minimizes the error between the observed signal and the generated signal by the model. The proposed approach effectively discriminates between healthy signals and epileptic seizure signals. We evaluate the proposed method using an electroencephalogram dataset with normal and epileptic seizure sequences. The empirical results show that the patterns of parameters as a seizure approach and the method is efficient in analyzing nonlinear epilepsy electroencephalogram data. The accuracy of estimating the optimal parameters is improved by using the nonlinear dynamic model.