Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Application of Support Vector Machine for Arabic Sentiment Classification Using Twitter-Based Dataset

    https://doi.org/10.1142/S0219649220400183Cited by:17 (Source: Crossref)
    This article is part of the issue:

    Sentiment classification is the process of classifying emotions and opinions in texts. In this study, the problem of Arabic sentiment analysis was addressed. A support vector machine (SVM) model was proposed to classify opinions in Arabic micro-texts as being positive or negative. To evaluate the performance of the SVM model, a dataset was built from tweets discussing several social issues in Saudi Arabia. These issues include changes that were implemented by the country as part of a newly established vision, known as Saudi Arabia Vision 2030. The constructed dataset was manually annotated according to the sentiment conveyed in the text. To achieve the best sentiment classification accuracy, several procedures were implemented within the proposed framework including light stemming, feature extraction (Ngrams, emoji and tweet-topic features), parameter optimisation and feature-set reduction. The experimental results revealed excellent outcomes. An accuracy of 89.83% was achieved using the proposed SVM model.