World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Taxonomy of Production Systems with Combining K-Means and Evolutionary Algorithms

    https://doi.org/10.1142/S0219686722500172Cited by:2 (Source: Crossref)

    The study of production systems taxonomy not only provides a good description of organization dominant groups but also provides the ground for more specialized studies such as a study of performance, the proper form of production decisions in each group, and the theorizing in it. In some taxonomic studies, due to high speed and ease of implementation, K-means cluster analysis was used to analyze data but the convergence took place in local optimum. For this reason, Hybrid Clustering Algorithms were used for the clustering of manufacturing companies. The clustering results of these methods were compared using validation indicators. According to the results of the comparisons, the best clustering algorithm was chosen, based on which cluster naming was done. Then, using the results of Discriminant Analysis, the distinctive dimensions of clusters were identified and the results showed that the manufacturing systems in Iran can be introduced in two dimensions of green production planning and resource capacity.