World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

IMAGE DE-NOISING USING DOUBLE DENSITY WAVELET TRANSFORM BASED ADAPTIVE THRESHOLDING TECHNIQUE

    https://doi.org/10.1142/S0219691305000701Cited by:15 (Source: Crossref)

    This paper describes an efficient and adaptive method of threshold estimation for removing impulse noise from images, based on Double Density Wavelet Transform (DDWT). The performance of image de-noising algorithms using wavelet transforms can be improved significantly by fixing an optimum threshold value, based on the analysis of the statistical parameters of subband coefficients. In this proposed method, the choice of the threshold estimation is carried out by analyzing the statistical parameters of the wavelet subband coefficients like standard deviation, arithmetic mean and geometrical mean. Here the noisy image is first decomposed into many levels to obtain different frequency bands using DDWT. Then soft thresholding method is used to remove the noisy coefficients, by fixing the optimum threshold value by the proposed method. Experimental results on several test images by using the proposed method show that, the proposed method yields significantly superior image quality and better Peak Signal-to-Noise Ratio (PSNR). Some comparisons with the best available results will be given in order to illustrate the effectiveness of the proposed algorithm.