SAMPLING AND OVERSAMPLING IN SHIFT-INVARIANT AND MULTIRESOLUTION SPACES I: VALIDATION OF SAMPLING SCHEMES
Abstract
We ask what conditions can be placed on generators φ of principal shift invariant spaces to ensure the validity of analogues of the classical sampling theorem for bandlimited signals. Critical rate sampling schemes lead to expansion formulas in terms of samples, while oversampling schemes can lead to expansions in which function values depend only on nearby samples. The basic techniques for validating such schemes are built on the Zak transform and the Poisson summation formula. Validation conditions are phrased in terms of orthogonality, smoothness, and self-similarity, as well as bandlimitedness or compact support of the generator. Effective sampling rates which depend on the length of support of the generator or its Fourier transform are derived.