World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MULTIRESOLUTION SIGNAL DECOMPOSITION AND APPROXIMATION BASED ON SUPPORT VECTOR MACHINES

    https://doi.org/10.1142/S0219691308002513Cited by:6 (Source: Crossref)

    The fusion of wavelet technique and support vector machines (SVMs) has become an intensive study in recent years. Considering that the wavelet technique is the theoretical foundation of multiresolution analysis (MRA), it is valuable for us to investigate the problem of whether a good performance could be obtained if we combine the MRA with SVMs for signal approximation. Based on the fact that the feature space of SVM and the scale subspace in MRA can be viewed as the same Reproducing Kernel Hilbert Spaces (RKHS), a new algorithm named multiresolution signal decomposition and approximation based on SVM is proposed. The proposed algorithm which approximates the signals hierarchically at different resolutions, possesses better approximation of smoothness for signal than conventional MRA due to using the approximation criterion of the SVM. Experiments illustrate that our algorithm has better approximation of performance than the MRA when being applied to stationary and non-stationary signals.

    AMSC: 22E46, 53C35, 57S20