World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on Wavelet Transform for Condition Based MaintenanceNo Access

BASE WAVELET SELECTION FOR BEARING VIBRATION SIGNAL ANALYSIS

    https://doi.org/10.1142/S0219691309002994Cited by:81 (Source: Crossref)

    A critical issue to ensuring the effectiveness of wavelet transform in machine condition monitoring and health diagnosis is the choice of the most suited base wavelet for signal decomposition and feature extraction. This paper addresses this issue by introducing a quantitative measure to select an appropriate base wavelet for analyzing vibration signals measured on rotary mechanical systems. Specifically, the measure based on energy-to-Shannon entropy ratio has been investigated. Both the simulated Gaussian-modulated sinusoidal signal and an actual ball bearing vibration signal have been used to evaluate the effectiveness of the developed measure on base wavelet selection. Experimental results demonstrate that the wavelet selected using the developed measure is better suited than other wavelets in diagnosing structural defects in the bearing. The method developed provides systematic guidance in wavelet selection.

    AMSC: 15A63, 54C70, 65T60