World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EFFICIENT STATISTICAL MODELING OF WAVELET COEFFICIENTS FOR IMAGE DENOISING

    https://doi.org/10.1142/S0219691309003136Cited by:10 (Source: Crossref)

    Statistical modeling of wavelet coefficients is a critical issue in wavelet domain signal processing. By analyzing the defects of other existing methods, and exploiting the local dependency of wavelet coefficients, an efficient statistical model is proposed. Improved variance estimation of the local wavelet coefficients can be obtained using the new model. Then we apply an approximate minimum mean squared error (MMSE) estimation procedure to restore the wavelet image coefficients. The modeling process is computational cost saving, and the denoising experiments show the algorithm outperforms other approaches in peak-signal-to-noise ratio (PSNR).

    AMSC: 22E46, 53C35, 57S20