World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CURVELET-WAVELET REGULARIZED SPLIT BREGMAN ITERATION FOR COMPRESSED SENSING

    https://doi.org/10.1142/S0219691311003955Cited by:47 (Source: Crossref)

    Compressed sensing is a new concept in signal processing. Assuming that a signal can be represented or approximated by only a few suitably chosen terms in a frame expansion, compressed sensing allows one to recover this signal from much fewer samples than the Shannon–Nyquist theory requires. Many images can be sparsely approximated in expansions of suitable frames as wavelets, curvelets, wave atoms and others. Generally, wavelets represent point-like features while curvelets represent line-like features well. For a suitable recovery of images, we propose models that contain weighted sparsity constraints in two different frames. Given the incomplete measurements f = Φu + ϵ with the measurement matrix Φ ∈ ℝK × N, K ≪ N, we consider a jointly sparsity-constrained optimization problem of the form . Here Ψc and Ψw are the transform matrices corresponding to the two frames, and the diagonal matrices Λc, Λw contain the weights for the frame coefficients. We present efficient iteration methods to solve the optimization problem, based on Alternating Split Bregman algorithms. The convergence of the proposed iteration schemes will be proved by showing that they can be understood as special cases of the Douglas–Rachford Split algorithm. Numerical experiments for compressed sensing-based Fourier-domain random imaging show good performances of the proposed curvelet-wavelet regularized split Bregman (CWSpB) methods, where we particularly use a combination of wavelet and curvelet coefficients as sparsity constraints.

    AMSC: 65K10, 94A08, 42C40