CONVERGENCE ANALYSIS OF COEFFICIENT-BASED REGULARIZATION UNDER MOMENT INCREMENTAL CONDITION
Abstract
In this paper, we investigate coefficient-based regularized least squares regression problem in a data dependent hypothesis space. The learning algorithm is implemented with samples drawn by unbounded sampling processes and the error analysis is performed by a stepping-stone technique. A new error decomposition technique is proposed for the error analysis. The regularization parameters in our setting provide much more flexibility and adaptivity. Sharp learning rates are addressed by means of l2-empirical covering numbers under a moment hypothesis condition.