World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Construction of symmetric fractional over-complete wavelets and applications in image restoration

    https://doi.org/10.1142/S021969131650020XCited by:0 (Source: Crossref)

    In this work, a novel design scheme is proposed for the construction of symmetric fractional over-complete wavelet filter banks. We first provide solutions to the open problem of designing low-pass filters that are symmetric and of minimum-length. We then obtain the high high-pass filters via Toeplitz matrix factorization which is of less computational complexity than existing methods. The resulting filter banks are approximately shift-invariant. The designed filter banks are applied in image restoration that uses an analysis based model solved by split Bregman algorithms. The experiments show the constructed symmetric fractional over-complete wavelet transforms (FOWTs) allow better restoration results than some other wavelet transforms in the literature.

    AMSC: 94A08