Robust patch-based sparse representation for hyperspectral image classification
Abstract
Sparse representation classification (SRC) has been successfully applied into hyperspectral image (HSI). A test sample (pixel) can be linearly represented by a few training samples of the training set. The class label of the test sample is then decided by the reconstruction residuals. To incorporate the spatial information to improve the classification performance, a patch matrix, which includes a spatial neighborhood set, is used to replace the original pixel. Generally, the objective function of the reconstruction residuals is represented as Frobenius-norm, which actually treats the elements in the reconstruction residuals in the same way. However, when a patch locates in the image edge, the samples in the patch may belong to different classes. Frobenius-norm is not suitable to compute the reconstruction residuals. In this paper, we propose a robust patch-based sparse representation classification (RPSRC) based on ℓ2,1-norm. An iteration algorithm is given to compute RPSRC efficiently. Extensive experimental results on two real-life HSI datasets demonstrate the effectiveness of RPSRC.