Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Robust patch-based sparse representation for hyperspectral image classification

    https://doi.org/10.1142/S021969131750028XCited by:7 (Source: Crossref)

    Sparse representation classification (SRC) has been successfully applied into hyperspectral image (HSI). A test sample (pixel) can be linearly represented by a few training samples of the training set. The class label of the test sample is then decided by the reconstruction residuals. To incorporate the spatial information to improve the classification performance, a patch matrix, which includes a spatial neighborhood set, is used to replace the original pixel. Generally, the objective function of the reconstruction residuals is represented as Frobenius-norm, which actually treats the elements in the reconstruction residuals in the same way. However, when a patch locates in the image edge, the samples in the patch may belong to different classes. Frobenius-norm is not suitable to compute the reconstruction residuals. In this paper, we propose a robust patch-based sparse representation classification (RPSRC) based on 2,1-norm. An iteration algorithm is given to compute RPSRC efficiently. Extensive experimental results on two real-life HSI datasets demonstrate the effectiveness of RPSRC.

    AMSC: 68U10, 62H35