World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Nonnegative matrix factorization with region sparsity learning for hyperspectral unmixing

    https://doi.org/10.1142/S0219691317500631Cited by:0 (Source: Crossref)

    Hyperspectral unmixing is one of the most important techniques in the remote sensing image analysis tasks. In recent decades, nonnegative matrix factorization (NMF) has been shown to be effective for hyperspectral unmixing due to the strong discovery of the latent structure. Most NMFs put emphasize on the spectral information, but ignore the spatial information, which is very crucial for analyzing hyperspectral data. In this paper, we propose an improved NMF method, namely NMF with region sparsity learning (RSLNMF), to simultaneously consider both spectral and spatial information. RSLNMF defines a new sparsity learning model based on a small homogeneous region that is obtained via the graph cut algorithm. Thus RSLNMF is able to explore the relationship of spatial neighbor pixels within each region. An efficient optimization scheme is developed for the proposed RSLNMF, and its convergence is theoretically guaranteed. Experiments on both synthetic and real hyperspectral data validate the superiority of the proposed method over several state-of-the-art unmixing approaches.

    AMSC: 22E46, 53C35, 57S20