World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Sine–cosine wavelets operational matrix method for fractional nonlinear differential equation

    https://doi.org/10.1142/S0219691319500267Cited by:4 (Source: Crossref)

    In this paper, we present a solution method for fractional nonlinear ordinary differential equations. We propose a method by utilizing the sine–cosine wavelets (SCWs) in conjunction with quasilinearization technique. The fractional nonlinear differential equations are transformed into a system of discrete fractional differential equations by quasilinearization technique. The operational matrices of fractional order integration for SCW are derived and utilized to transform the obtained discrete system into systems of algebraic equations and the solutions of algebraic systems lead to the solution of fractional nonlinear differential equations. Convergence analysis and procedure of implementation for the proposed method are also considered. To illustrate the reliability and accuracy of the method, we tested the method on fractional nonlinear Lane–Emden type equation and temperature distribution equation.

    AMSC: 65M70, 65L60, 65N35