World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Building pose estimation from the perspective of UAVs based on CNNs

    https://doi.org/10.1142/S021969132150003XCited by:1 (Source: Crossref)

    With the rapid development of computer technology, building pose estimation combined with Augmented Reality (AR) can play a crucial role in the field of urban planning and architectural design. For example, a virtual building model can be placed into a realistic scenario acquired by a Unmanned Aerial Vehicle (UAV)to visually observe whether the building can integrate well with its surroundings, thus optimizing the design of the building. In the work, we contribute a building dataset for pose estimation named BD3D. To obtain accurate building pose, we use a physical camera which can simulate realistic cameras in Unity3D to simulate UAVs perspective and use virtual building models as objects. We propose a novel neural network that combines MultiBin module with PoseNet architecture to estimate the building pose. Sometimes, the building is symmetry and ambiguity causes its different surfaces to have similar features, making it difficult for CNNs to learn the differential features between the different surfaces. We propose a generalized world coordinate system repositioning strategy to deal with it. We evaluate our network with the strategy on BD3D, and the angle error is reduced to 3 from 45. Code and dataset have been made available at: https://github.com/JellyFive/Building-pose-estimation-from-the-perspective-of-UAVs-based-on-CNNs.

    AMSC: 22E46, 53C35, 57S20