World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Unsupervised spatial-awareness attention-based and multi-scale domain adaption network for point cloud classification

    https://doi.org/10.1142/S0219691321500077Cited by:2 (Source: Crossref)

    Domain adaption is a special transfer learning method, whose source domain and target domain generally have different data distribution, but need to complete the same task. There have been many significant types of research on domain adaptation in 2D images, but in 3D data processing, domain adaptation is still in its infancy. Therefore, we design a novel domain adaptive network to complete the unsupervised point cloud classification task. Specifically, we propose a multi-scale transform module to improve the feature extractor. Besides, a spatial-awareness attention module combined with channel attention to assign weights to each node is designed to represent hierarchically scaled features. We have validated the proposed method on the PointDA-10 dataset for domain adaption classification tasks. Empirically, it shows strong performance on par or even better than state-of-the-art.

    AMSC: 22E46, 53C35, 57S20