World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A novel feature representation approach for single-lead heartbeat classification based on adaptive Fourier decomposition

    https://doi.org/10.1142/S0219691321500107Cited by:0 (Source: Crossref)

    This paper proposes a novel feature representation approach for heartbeat classification using single-lead electrocardiogram (ECG) signals based on adaptive Fourier decomposition (AFD). AFD is a recently developed signal processing tool that provides useful morphological features, which are referred as AFD-derived instantaneous frequency (IF) features and differ from those provided by traditional tools. The AFD-derived IF features, together with ECG landmark features and RR interval features, are trained by a support vector machine to perform the classification. The proposed method improves the average accuracy of the feature extraction-based methods, reaching a level comparable to deep learning but with less training data, and at the same time being interpretable for the learned features. It also greatly reduces the dimension of the feature set, which is a disadvantage of the feature extraction-based methods, especially for ECG signals. To evaluate the performance, the Association for the Advancement of Medical Instrumentation standard is applied to publicly available benchmark databases, including the MIT-BIH arrhythmia and MIT-BIH supraventricular arrhythmia databases, to classify heartbeats from the single-lead ECG. The overall performance is compared to selected state-of-the-art automatic heartbeat classification algorithms, including one-lead and even several two-lead-based methods. The proposed approach achieves superior balanced performance and real-time implementation.

    AMSC: 92C55, 42A38, 92A12