World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Comparison theorems on large-margin learning

    https://doi.org/10.1142/S0219691321500156Cited by:2 (Source: Crossref)

    This paper studies the binary classification problem associated with a family of Lipschitz convex loss functions called large-margin unified machines (LUMs), which offers a natural bridge between distribution-based likelihood approaches and margin-based approaches. LUMs can overcome the so-called data piling issue of support vector machine in the high-dimension and low-sample size setting, while their theoretical analysis from the perspective of learning theory is still lacking. In this paper, we establish some new comparison theorems for all LUM loss functions which play a key role in the error analysis of large-margin learning algorithms. Based on the obtained comparison theorems, we further derive learning rates for regularized LUMs schemes associated with varying Gaussian kernels, which maybe of independent interest.

    AMSC: 68Q32, 68W40, 41A46