World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Speech enhancement via adaptive Wiener filtering and optimized deep learning framework

    https://doi.org/10.1142/S0219691322500321Cited by:4 (Source: Crossref)

    In today’s scientific epoch, speech is an important means of communication. Speech enhancement is necessary for increasing the quality of speech. However, the presence of noise signals can corrupt speech signals. Thereby, this work intends to propose a new speech enhancement framework that includes (a) training phase and (b) testing phase. The input signal is first given to STFT-based noise estimate and NMF-based spectra estimate during the training phase in order to compute the noise spectra and signal spectra, respectively. The obtained signal spectra and noise spectra are then Wiener-filtered, then empirical mean decomposition (EMD) is used. Because the tuning factor of Wiener filters is so important, it should be computed for each signal by coaching in a fuzzy wavelet neural network (FW-NN). Subsequently, a bark frequency is computed from the denoised signal, which is then subjected to FW-NN to identify the suitable tuning factor for all input signals in the Wiener filter. For optimal tuning of ηη, this work deploys the fitness-oriented elephant herding optimization (FO-EHO) algorithm. Additionally, an adaptive Wiener filter is used to supply EMD with the ideal tuning factor from FW-NN, producing an improved speech signal. At last, the presented approach’s supremacy is proved with varied metrics.

    AMSC: 68Txx