World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

TFA-CLSTMNN: Novel convolutional network for sound-based diagnosis of COVID-19

    https://doi.org/10.1142/S0219691322500588Cited by:0 (Source: Crossref)

    The outbreak of the global COVID-19 pandemic has become a public crisis and is threatening human life in every country. Recently, researchers have developed testing methods via patients cough recordings. In order to improve the testing accuracy, in this paper, we establish a novel COVID-19 sound-based diagnosis framework, i.e. TFA-CLSTMNN, which integrates time-frequency domain features of the recorded cough with the Attention-Convolution Long Short-Term Memory Neural Network. Specifically, we calculate the Mel-frequency cepstrum coefficient (MFCC) of the cough data to extract the time-frequency domain features. We then apply the convolutional neural network and the attentional mechanism on the time-frequency features, which is followed by the long short-term memory neural network to analyze the MFCC features of the data. The recognition and classification can be then carried out to evaluate the positiveness or negativeness of the tested samples. Experimental results show that the proposed TFA-CLSTMNN framework outperforms the baseline neural networks in sound-based COVID-19 diagnosis and derives an accuracy over 0.95 on the public real-world datasets.