World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON THE EQUIVALENCE OF THE CH AND CHSH INEQUALITIES FOR TWO THREE-LEVEL SYSTEMS

    https://doi.org/10.1142/S0219749903000073Cited by:1 (Source: Crossref)

    In this paper we show a Clauser-Horne (CH) inequality for two three-level quantum systems or qutrits, alternative to the CH inequality given by Kaszlikowski et al. [Phys. Rev. A65, 032118 (2002)]. In contrast to this latter CH inequality, the new one is shown to be equivalent to the Clauser-Horne-Shimony-Holt (CHSH) inequality for two qutrits given by Collins et al. [Phys. Rev. Lett. 88, 040404 (2002)]. Both the CH and CHSH inequalities exhibit the strongest resistance to noise for a nonmaximally entangled state for the case of two von Neumann measurements per site, as first shown by Acin et al. [Phys. Rev. A65, 052325 (2002)]. This equivalence, however, breaks down when one takes into account the less-than-perfect quantum efficiency of detectors. Indeed, for the noiseless case, the threshold quantum efficiency above which there is no local and realistic description of the experiment for the optimal choice of measurements is found to be for the CH inequality, whereas it is equal to for the CHSH inequality.