World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

METHOD FOR IMPLEMENTATION OF UNIVERSAL QUANTUM LOGIC GATES IN A SCALABLE ISING SPIN QUANTUM COMPUTER

    https://doi.org/10.1142/S0219749903000085Cited by:21 (Source: Crossref)

    We present protocols for implementation of universal quantum gates on an arbitrary superposition of quantum states in a scalable solid-state Ising spin quantum computer. The spin chain is composed of identical spins 1/2 with the Ising interaction between the neighboring spins. The selective excitations of the spins are provided by the gradient of the external magnetic field. The protocols are built of rectangular radio-frequency pulses. Since the wavelength of the radio-frequency pulses is much larger than the distance between the spins, each pulse affects all spins in the chain and introduces the phase and probability errors, which occur even without the influence of the environment. These errors caused by the unwanted transitions are minimized and computed numerically.

    PACS: 03.67.Lx, 75.10.Jm