Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THERMAL ENTANGLEMENT IN THE TWO-QUBIT HEISENBERG XYZ MODEL

    https://doi.org/10.1142/S0219749904000262Cited by:48 (Source: Crossref)

    We study the entanglement of a two-qubit one-dimensional XYZ Heisenberg chain in thermal equilibrium at temperature T. We obtain an analytical expression for the concurrence of this system in terms of the parameters of the Hamiltonian and T. We show that depending on the relation among the coupling constants, it is possible to increase the amount of entanglement of the system by increasing its anisotropy. We also show numerically that for all sets of the coupling constants entanglement is a monotonically decreasing function of the temperature T, proving that we must have at least an external magnetic field in the z-direction to obtain a behavior where entanglement increases with T.