World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ASYMPTOTIC ENTANGLEMENT IN OPEN QUANTUM SYSTEMS

    https://doi.org/10.1142/S0219749908003967Cited by:25 (Source: Crossref)

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we solve in the asymptotic long-time regime the master equation for two independent harmonic oscillators interacting with an environment. We give a description of the continuous-variable asymptotic entanglement in terms of the covariance matrix of the considered subsystem for an arbitrary Gaussian input state. Using Peres–Simon necessary and sufficient condition for separability of two-mode Gaussian states, we show that for certain classes of environments the initial state evolves asymptotically to an entangled equilibrium bipartite state, while for other values of the coefficients describing the environment, the asymptotic state is separable. We calculate also the logarithmic negativity characterizing the degree of entanglement of the asymptotic state.