World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MAXIMALLY ENTANGLED STATES AND BELL'S INEQUALITY IN RELATIVISTIC REGIME

    https://doi.org/10.1142/S0219749909004669Cited by:3 (Source: Crossref)

    In this letter we show that in the relativistic regime, maximally entangled state of two spin-1/2 particles not only gives maximal violation of the Bell-CHSH inequality but also gives the largest violation attainable for any pairs of four spin observables that are noncommuting for both systems. Also, we extend our results to three spin-1/2 particles. We obtain the largest eigenvalue of Bell operator and show that this value is equal to the expectation value of Bell operator on GHZ state.