World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

LANDAU-ZENER TRANSITIONS IN THE PRESENCE OF SPIN ENVIRONMENT

    https://doi.org/10.1142/S0219749909005353Cited by:7 (Source: Crossref)

    We study the effect of an environment consisting of noninteracting two level systems on Landau-Zener transitions with an interest on the performance of an adiabatic quantum computer. We show that if the environment is initially at zero temperature, it does not affect the transition probability. An excited environment, however, will always increase the probability of making a transition out of the ground state. For the case of equal intermediate gaps, we find an analytical upper bound for the transition probability in the limit of large number of environmental spins. We show that such an environment will only suppress the probability of success for adiabatic quantum computation by at most a factor close to 1/2.