QUANTUM STATE SPLITTING WITH YEO–CHUA GENUINE ENTANGLED STATE
Abstract
Utilizing the four-qubit genuine entangled state presented by Yeo and Chua [Phys. Rev. Lett.96 (2006) 060502], we propose a tripartite quantum state splitting scheme for a sender to achieve the bipartition of his/her arbitrary two-qubit pure state between two sharers. During the scheme design, two novel and important ideas originated, respectively, from Phys. Rev. A74 (2006) 054303 and J. Phys. B41 (2008) 145506 are adopted to enhance the security and optimize resource consumption, operation complexity, and intrinsic efficiency. In the scheme, first the sender performs two Bell-state measurements and publishes the results. Afterwards, if and only if the two sharers cooperate together, they can perfectly restore the sender's quantum pure state by executing first a two-qubit collective unitary operation and then two single-qubit unitary operations.