World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

REALIZATION OF QUANTUM LOGIC GATES AND CLUSTER STATES WITH SUPERCONDUCTING QUANTUM-INTERFERENCE DEVICES

    https://doi.org/10.1142/S0219749911007423Cited by:0 (Source: Crossref)

    We propose a method for realizing quantum logic gates and cluster states with superconducting quantum-interference devices (SQUIDs) in cavity QED via Raman transition. In this proposal, quantum logic gates and cluster states are realized by using only two lower flux states of the SQUID system and the excited state would not be excited. Therefore, the effect of decoherence caused by the levels of the SQUID system is possibly minimized.

    PACS: 42.50.Dv, 85.25.Dq, 03.65.Ud