World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A GAME THEORETIC APPROACH TO STUDY THE QUANTUM KEY DISTRIBUTION BB84 PROTOCOL

    https://doi.org/10.1142/S0219749911007873Cited by:0 (Source: Crossref)

    Quantum cryptography uses quantum mechanics to guarantee secure communication. BB84 is a widely used quantum key distribution that provides a way for two parties, a sender, Alice, and a receiver, Bob, to share an unconditionally secure key in the presence of an eavesdropper, Eve.

    Three different criteria can be assumed to study the BB84 protocol. They are the efficiency of the protocol, the probability that Eve remains undetected, and the amount of knowledge Eve has about Alice's bit sequence.

    In a previous approach, we only considered the probability that Eve remains undetected. We viewed this protocol as a three player static game in which Alice and Bob were two cooperative players and Eve was a competitive one. In our game model, Alice's and Bob's objective was to maximize the probability of detecting Eve, while Eve's objective was to minimize this probability. In this paper, our previous effort is extended and we also consider the other two criteria, i.e. the efficiency of the protocol and the amount of knowledge Eve has about Alice's bit sequence. Using these models, we show how game theory can be used to find the strategies for Alice, Bob and Eve.