World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CHARACTERIZING QUANTUMNESS VIA ENTANGLEMENT CREATION

    https://doi.org/10.1142/S0219749911008258Cited by:26 (Source: Crossref)

    In [Piani et al., PRL106 (2011) 220403], an activation protocol was introduced which maps the general non-classical (multipartite) correlations between given systems into bipartite entanglement between the systems and local ancillae by means of a potentially highly entangling interaction. Here, we study how this activation protocol can be used to entangle the starting systems themselves via entanglement swapping through a measurement on the ancillae. Furthermore, we bound the relative entropy of quantumness (a naturally arising measure of non-classicality in the scheme of Piani et al. above) for a special class of separable states, the so-called classical–quantum states. In particular, we fully characterize the classical–quantum two-qubit states that are maximally non-classical.