ENTANGLEMENT DYNAMICS IN FINITE QUDIT CHAIN IN CONSISTENT MAGNETIC FIELD
Abstract
Based on the Liouville–von Neumann equation, we obtain a closed system of equations for the description of a qutrit or coupled qutrits in an arbitrary, time-dependent, external magnetic field. The dependence of the dynamics on the initial states and the magnetic field modulation is studied analytically and numerically. We compare the relative entanglement measure's dynamics in bi-qudits with permutation particle symmetry. We find the magnetic field modulation which retains the entanglement in the system of two coupled qutrits. Analytical formulae for the entanglement measures in finite chains from two to six qutrits or three quartits are presented.