World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

OPTICAL PHONON EFFECT IN AN ASYMMETRIC QUANTUM DOT QUBIT

    https://doi.org/10.1142/S0219749912500773Cited by:31 (Source: Crossref)

    We investigate the eigenenergies and the eigenfunctions of the ground and the first excited states of an electron, which is strongly coupled to LO-phonon in an asymmetric quantum dot (QD) by using variational method of Pekar type. The present system may be used as a two-level qubit. When the electron is in the superposition state of the ground and the first excited states, the probability density of the electron oscillates in the QD with a certain period. It is found that the oscillation period is an increasing function of the transverse and the longitudinal effective confinement lengths of the QD, whereas it is a decreasing one of the electron–phonon coupling strength.

    PACS: 71.38.-k, 63.20.kd, 63.22.-m