World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

QUANTUM PHASE ESTIMATION WITH AN ARBITRARY NUMBER OF QUBITS

    https://doi.org/10.1142/S0219749913500081Cited by:2 (Source: Crossref)

    Due to the great difficulty in scalability, quantum computers are limited in the number of qubits during the early stages of the quantum computing regime. In addition to the required qubits for storing the corresponding eigenvector, suppose we have additional k qubits available. Given such a constraint k, we propose an approach for the phase estimation for an eigenphase of exactly n-bit precision. This approach adopts the standard recursive circuit for quantum Fourier transform (QFT) in [R. Cleve and J. Watrous, Fast parallel circuits for quantum fourier transform, Proc. 41st Annual Symp. on Foundations of Computer Science (2000), pp. 526–536.] and adopts classical bits to implement such a task. Our algorithm has the complexity of O(n log k), instead of O(n2) in the conventional QFT, in terms of the total invocation of rotation gates. We also design a scheme to implement the factorization algorithm by using k available qubits via either the continued fractions approach or the simultaneous Diophantine approximation.