World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ENTANGLEMENT FOR JAYNES CUMMINGS MODEL IN THE PRESENCE MULTI-PHOTON PROCESS UNDER DECOHERENCE EFFECT

    https://doi.org/10.1142/S0219749913500263Cited by:1 (Source: Crossref)

    The quantum nonlocal correlation between an atom and coherent field is described quantitatively in terms of multi-photon and phase damping processes. Especially, considering a two-level atom interacts with a single-mode quantized field in a coherent state inside a phase-damped cavity, and taking into account the number of multi-photon transitions and phase damping effect, the entanglement is investigated during the time evolution as a function of involved' parameters in the system. The results show that the enhancement of the transitions are very useful in generating a high amount of entanglement. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement dynamics between the bipartite system with its environment is evaluated and investigated during the dissipative process. Finally, the physical interpretation of the correlation behaviors between the subsystems is explained through the statistical properties of the field.

    PACS: 42.50.Gy, 42.50.Nn, 42.65.-k