World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Self-contained n-qubit quantum refrigerator

    https://doi.org/10.1142/S021974991450018XCited by:0 (Source: Crossref)

    Brunner et al. [Phys. Rev. E 85 (2012) 05111] have claimed that, "essentially only the smallest machines can approach Carnot efficiency". We have verified this claim by raising self-contained four-qubit quantum refrigerator, and we have shown that according to concepts of virtual qubit, it can reach the maximum efficiency in other words Carnot efficiency. But its efficiency, such as self-contained three-qubit quantum refrigerator is not universal. We also investigated a special case of self-contained four-qubit quantum refrigerator, in other words self-contained four-qubit quantum refrigerator with two hot baths in the same temperature. We demonstrated that its efficiency has the form as efficiency of a self-contained three-qubit quantum refrigerator. In other words, from the perspective of efficiency, this particular model is equivalent to self-contained three-qubit quantum refrigerator. We also demonstrated the efficiency of this particular model in the Carnot limit that is independent from details of system model, but only depends on the environmental temperatures. Also, we raised a system that consists of n-qubit which acts as a refrigerator. According to self-contained four-qubit quantum refrigerator, we also investigated a special case of self-contained n-qubit quantum refrigerator — a self-contained n-qubit quantum refrigerator with (n - 2) baths in the same temperature. We considered the three different special situations of the n-qubit refrigerator and demonstrated their efficiency in three different situations which has the form as efficiency of self-contained three-qubit quantum refrigerator. In this special situations, (n - 2) qubits are in thermal contact with isothermal heat baths.