World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Quantum enhanced cross-validation for near-optimal neural networks architecture selection

    https://doi.org/10.1142/S0219749918400051Cited by:4 (Source: Crossref)
    This article is part of the issue:

    This paper proposes a quantum-classical algorithm to evaluate and select classical artificial neural networks architectures. The proposed algorithm is based on a probabilistic quantum memory (PQM) and the possibility to train artificial neural networks (ANN) in superposition. We obtain an exponential quantum speedup in the evaluation of neural networks. We also verify experimentally through a reduced experimental analysis that the proposed algorithm can be used to select near-optimal neural networks.