World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Bistable Josephson cell as a single microwave photon sensor

    https://doi.org/10.1142/S0219749919410144Cited by:1 (Source: Crossref)
    This article is part of the issue:

    The dissipative dynamics of a bistable Josephson cell in a transmission line resonator in a weakly dissipative regime was studied theoretically and numerically. The bistable cell consists of a quantronium qubit and a nonlinear bifurcation amplifier. Under the rotating wave approximation, the problem of the system evolution in a boson thermostat is reduced to the Pauli equation. Using the master equation, we have numerically studied the dissipative dynamics of the system. It was shown that the nonlinear bifurcation amplifier can determine the qubit states and the system can be used as a detector of single microwave photons.