World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Error-insensitive preparation of entangled states between a Josephson qubit and microwave photons via invariant-based shortcuts

    https://doi.org/10.1142/S0219749923500363Cited by:0 (Source: Crossref)

    Optimal preparation of quantum entanglement is of significance to information processing and state engineering. In this paper, an efficient scheme is proposed to implement error-insensitive generation of entangled states between a Josephson qubit and microwave photons by the technique of invariant-based shortcuts to adiabaticity. A superconducting qubit is dispersively coupled to a quantized cavity field of one-dimensional transmission line resonator. Within a considered subspace spanned by three composite states, we deal with an effective interaction of the composite system with two classical drivings. A maximally entangled qubit-photon state can be deterministically induced using a splitting-like quantum state transfer. To nullify the deviation errors of Rabi coupling and frequency detuning, we optimize the driving parameters and then make the entanglement creation insusceptible to these control imperfections. Thanks to the mitigation of deviation effects, robustness against the residual noisy environment could be obtained numerically. The proposed strategy could provide a promising avenue towards fast and robust information processing with superconducting circuit quantum electrodynamics.