World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FINITE-TIME STABILITY IN MEAN FOR NABLA UNCERTAIN FRACTIONAL ORDER LINEAR DIFFERENCE SYSTEMS

    https://doi.org/10.1142/S0218348X21500973Cited by:6 (Source: Crossref)

    In this paper, the finite-time stability in mean for the uncertain fractional order linear time-invariant discrete systems is investigated. First, the uncertain fractional order difference equations with the nabla operators are introduced. Then, some conditions of finite-time stability in mean for the systems driven by the nabla uncertain fractional order difference equations with the fractional order 0<ν<1 are obtained by the property of Riemann–Liouville-type nabla difference and the generalized Gronwall inequality. Furthermore, based on these conditions, the state feedback controllers are designed. Finally, some examples are presented to illustrate the effectiveness of the results.