World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A SMOOTHING METHOD FOR SHAPE OPTIMIZATION: TRACTION METHOD USING THE ROBIN CONDITION

    https://doi.org/10.1142/S0219876206000709Cited by:79 (Source: Crossref)

    This paper presents an improved version of the traction method that was proposed as a solution to shape optimization problems of domain boundaries in which boundary value problems of partial differential equations are defined. The principle of the traction method is presented based on the theory of the gradient method in Hilbert space. Based on this principle, a new method is proposed by selecting another bounded coercive bilinear form from the previous method. The proposed method obtains domain variation with a solution to a boundary value problem with the Robin condition by using the shape gradient.

    Remember to check out the Most Cited Articles!

    Check out these titles in finite element methods!