World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NONLINEAR THIN-PLATE BENDING ANALYSES USING THE HERMITE REPRODUCING KERNEL APPROXIMATION

    https://doi.org/10.1142/S0219876212400129Cited by:15 (Source: Crossref)

    This study analyzed thin-plate bending problems with a geometrical nonlinearity using the Hermite reproducing kernel approximation and sub-domain-stabilized conforming integration. In thin-plate bending analyses, the deflections and rotations satisfy so-called Kirchhoff mode reproducing conditions. It is then possible to solve large deflection analyses of thin plates, such as elastic bucking problems, with high accuracy and efficiency. Total Lagrangian method is applied to solve the geometrical nonlinearity of the thin plates' deflections and rotations. The Green–Lagrange strain and second Piola–Kirchhoff stress forms are adopted to represent the strains and stresses in the thin plates. Mathematical formulation and some numerical examples are also demonstrated.

    Remember to check out the Most Cited Articles!

    Check out these titles in finite element methods!