World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on Advances on Numerical Methods for Engineering Problems; Guest Editors: Guiyong Zhang and Xiangyang CuiNo Access

Development of the Cell-based Smoothed Discrete Shear Gap Plate Element (CS-FEM-DSG3) using Three-Node Triangles

    https://doi.org/10.1142/S0219876215400150Cited by:19 (Source: Crossref)

    The paper presents the formulation and recent development of the cell-based smoothed discrete shear gap plate element (CS-FEM-DSG3) using three-node triangles. In the CS-FEM-DSG3, each triangular element will be divided into three sub-triangles, and in each sub-triangle, the original plate element DSG3 is used to compute the strains and to avoid the transverse shear locking. Then the cell-based strain smoothing technique (CS-FEM) is used to smooth the strains on these three sub-triangles. The numerical examples illustrate four superior properties of the CS-FEM-DSG3 including: (1) being a strong competitor to many existing three-node triangular plate elements in the static analysis; (2) giving high accurate solutions for problems with skew geometries in the static analysis; (3) giving high accurate solutions in free vibration analysis; (4) providing accurate values of high frequencies of plates by using only coarse meshes. Due to its superior and simple properties, the CS-FEM-DSG3 has been now developed for various analyses such as: flat shells, stiffened plates, functionally graded plates, composite plates, piezoelectricity composite plates, cracked plate and plates resting on the viscoelastic foundation subjected to moving loads, etc.

    Remember to check out the Most Cited Articles!

    Check out these titles in finite element methods!